\qquad

Section 1.5 Infinite Limits

Consider the function $f(x)=\frac{3}{x-2}$. In this case, we say that $f(x)$ decreases without bound as x approaches 2 from the left, and $f(x)$ increases without bound as x approaches 2 from the right.

$f(x)$ increases and decreases without bound as x approaches 2 .

and

$$
\lim _{x \rightarrow 2^{+}} \frac{3}{x-2}=\infty \quad f(x) \text { increases without bound as } x \text { approaches } 2 \text { from the right. }
$$

Definition of Infinite Limits

Let f be a function that is defined at every real number in some open interval containing c (except possibly at c itself). The statement

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

means that for each $M>0$ there exists a $\delta>0$ such that $f(x)>M$ whenever $0<|x-c|<\delta$ (see Figure 1.40). Similarly, the statement

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

means that for each $N<0$ there exists a $\delta>0$ such that $f(x)<N$ whenever $0<|x-c|<\delta$. To define the infinite limit from the left, replace $0<|x-c|<\delta$ by $c-\delta<x<c$. To define the infinite limit from the right, replace $0<|x-c|<\delta$ by $c<x<c+\delta$.

The symbols ∞ and $-\infty$ do not represent real numbers. They are convenient symbols used to describe unbounded conditions more concisely.

A limit in which $f(x)$ increases or decreases without bound as x approaches \mathcal{C} is called an infinite limit.

Be sure that you see the equal sign in the statement $\lim f(x)=\infty$ does not mean that the limit exists! On the contrary, it tells us how the limit fails to exist by denoting the unbounded behavior of $f(x)$ as x approaches c.

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -2 from the left and from
the right.

Ex. 1

$$
f(x)=2\left|\frac{x}{x^{2}-4}\right|
$$

$$
\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} 2\left|\frac{x}{x^{2}-4}\right|
$$

$$
=\infty
$$

The function shows unbounded behavior upward on both sides of -2 . These

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} 2\left|\frac{x}{x^{2}-4}\right|=\infty \\
& \lim _{x \rightarrow-2^{+}} 2\left|\frac{x}{x^{2}-4}\right|=\infty
\end{aligned}
$$

Ex. 2

$$
f(x)=\frac{1}{x+2}
$$

$\lim _{x \rightarrow-2} \frac{1}{x+2}$ does not exist, since $\lim _{x \rightarrow-2^{-}} \frac{1}{x+2} \neq \lim _{x \rightarrow-2^{+}} \frac{1}{x+2}$.
we are seeing unbounded fundicu keluavior.

Ex. 3

$$
f(x)=\sec \frac{\pi x}{4}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} \sec \left(\frac{\pi x}{4}\right)=-\infty \\
& \lim _{x \rightarrow-2^{+}} \sec \left(\frac{\pi x}{4}\right)=+\infty \\
& \lim _{x \rightarrow-2} \sec \left(\frac{\pi x}{4}\right) \text { does us exist } \\
& \text { because } \lim _{x \rightarrow-2^{-}} \sec \left(\frac{\pi x}{4}\right) \neq \lim _{x \rightarrow-2^{+}} \sec \left(\frac{\pi x}{4}\right)
\end{aligned}
$$

By completing the table, determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -3 from the left and from the right. Graph the function to confirm your result.
Ex. $4 f(x)=\frac{x^{2}}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001
$f(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				
$\lim _{x \rightarrow-3} \frac{x^{2}}{x^{2}-9}=$ (ADesNstExist"				

"Disagree"
$\lim _{x \rightarrow-3}^{\text {because }}-\frac{x^{2}}{x^{2}-9}=+\infty$

Ex. $5 f(x)=\cot \left(\frac{\pi x}{3}\right)$

x	-3.5	-3.1	-3.01	-3.001
$f(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				

$\lim _{x \rightarrow 2} \cot \left(\frac{\pi x}{3}\right)=-\infty$
$x \rightarrow 2-3^{-}$

$$
x=-3
$$

V_{n}

$$
\lim _{x \rightarrow-3^{+}} \cot \left(\frac{1}{3}\right)=+\infty
$$

Definition of Vertical Asymptote
If $f(x)$ approaches infinity (or negative infinity) as x approaches c from the right or the left, then the line $x=c$ is a vertical asymptote of the graph of f.

THEOREM I.I4 Vertical Asymptotes
Let f and g be continuous on an open interval containing c. If $f(c) \neq 0$, $g(c)=0$, and there exists an open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by

$$
h(x)=\frac{f(x)}{g(x)}
$$

has a vertical asymptote at $x=c$.

Find the vertical asymptotes of the graph of the function. Graph the function to confirm your result.

$$
\begin{aligned}
& \text { at } \\
& x=-3 \\
& f(-3)=\frac{-6}{(-2)(-4)}=-\frac{3}{4} \\
& \text { comunon } \\
& \text { Factor }
\end{aligned}
$$

$$
\begin{aligned}
& =(x+3)\left(x^{2}-1\right) \\
& A(B+C)=B \cdot A+C \cdot A
\end{aligned}
$$

THEOREM I.I5 Properties of Infinite Limits
Let c and L be real numbers and let f and g be functions such that

$$
\lim _{x \rightarrow c} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L
$$

1. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\infty$
2. Product:

$$
\begin{aligned}
& \lim _{x \rightarrow c}[f(x) g(x)]=\infty, \quad L>0 \\
& \lim _{x \rightarrow c}[f(x) g(x)]=-\infty, \quad L<0
\end{aligned}
$$

3. Quotient:
$\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$
Similar properties hold for one-sided limits and for functions for which the limit of $f(x)$ as x approaches c is $-\infty$.

Find the one-sided limit. If it does not exist, explain why.

$$
\begin{aligned}
& =\frac{-\frac{5}{2}}{-4} \\
& =\frac{5}{2} \cdot \frac{1}{4} \\
& =\frac{5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. } 11 \lim _{x \rightarrow 0^{+}}\left(6+\frac{1}{x^{3}}\right) \\
& =\lim _{x \rightarrow 0^{+}} 6+\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3}} \\
& =6+\infty \\
& =\infty \quad \text { DNEE }
\end{aligned}
$$

$$
x=0
$$

U.A.

$$
\begin{aligned}
& \operatorname{Ex.~} 12^{\lim _{x \rightarrow 3^{+}}\left(\frac{x}{3}+\cot \left(\frac{\pi x}{2}\right)\right)} \\
= & \lim _{x \rightarrow 3^{+}} \frac{x}{3}+\lim _{x \rightarrow 3^{+}} \cot \left(\frac{\pi x}{2}\right) \\
= & \frac{3}{3}+\lim _{x \rightarrow 3^{+}} \frac{\cos \left(\frac{\pi x}{2}\right)}{\sin \left(\frac{\pi x}{2}\right)} \\
= & 1+\lim _{x \rightarrow 3^{+}+\cos \left(\frac{\pi x}{2}\right)}^{\lim _{x \rightarrow 3^{+}} \sin \left(\frac{\pi x}{2}\right)} \cos \left(\frac{\pi x}{2}\right)=0 \\
= & 1+\frac{0}{\sin \left(\frac{3 \pi}{2}\right)} \quad \frac{\pi x}{2}=\frac{3 \pi}{2} \\
= & 1+0 \quad x=3
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Ex. } 13 \lim _{x \rightarrow \frac{\pi^{+}}{2}} \frac{-2}{\cos (x)}=f \infty \\
\cos \left(\frac{\pi}{2}\right)=0 \\
=\frac{\lim _{x \rightarrow \pi^{+}}}{}(-2) \\
=\frac{\lim _{x \rightarrow \frac{\pi^{+}}{2}}(\cos (x)}{0}
\end{array}\right) \quad \text { w|ONG}
$$

$$
\begin{gathered}
\cos \left(\frac{\pi}{2}\right)=0 \quad \cos \left(-\frac{\pi}{2}\right)=0 \\
V A \\
\cot (x)=\frac{\cos \alpha A}{\sin (x)} \quad x=-\frac{\pi}{2} \quad x=\pi / 2
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ex. } 14 \lim _{x \rightarrow 0^{-}} \frac{x+2}{\cot (x)}=0 \\
= & \lim _{x \rightarrow 0^{-}}(x+2) \cdot \lim _{x \rightarrow 0^{-}} \tan (x) \\
= & (0+2) \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{\cos (x)} \\
= & 2 \cdot \lim _{x \rightarrow 0} \sin (x) \\
= & \frac{2 \cdot 0}{x \rightarrow 0^{2} \cos (x)} \\
= & 0
\end{aligned}
$$

Ex. $15 \lim _{x \rightarrow \frac{1}{2}^{+}} x^{2} \tan (\pi x)$

Ex. $15 \lim _{x \rightarrow \frac{1}{2}^{+}} x^{2} \tan (\pi x)$

